Unrolling SGD: Understanding Factors Influencing Machine Unlearning

Anvith Thudi*, Gabriel Deza*, Varun Chandrasekaran, Nicolas Papernot

* Joint First Authors

Outline

1. Background on Unlearning

2. Our Method

Background on Unlearning

Why Unlearn?

1. Privacy: *Right-to-be-forgotten* (EU GDPR)

2. Security: Data Poisoning

3. Performance: Bad data

The "Protocol"

Important Details

Could be:

- 1. (Distribution of) Weights
- 2. (Distribution of) Functions

The Big Question

Exact Unlearning

"Machine Unlearning" Bourtoule et al.

Expensive

Approximate Unlearning

W.r.t some "metric" d

Examples of "Metrics"

1. ℓ_2 on weights

2. **KL-Divergence** on weight distribution

3. Membership Inference on functions

Our Approach

How to Better Study Approximate Unlearning?

1. Equivalent "metrics"

2. Easy to measure error

An Idea:

Verification Error : Expected ℓ_2 difference on weights

1) uniform **convergence in outputs** over finite sets

2) **bounds* all L^p metrics** on weight distribution

Problems

How to unlearn?

How to (cheaply) measure error

Approximate SGD

A Proxy Metric for Verification Error

How to Further Reduce Verification Error?

Train with <u>SD Loss</u> = CE Loss + γ * standard deviation of logits

Motivation (Logistic Regression): Pushes minima closer to initialization

Also Reduces Membership Inference

Always reduces baseline: $\gamma = 0$, "Before Unlearning"

Thank You!