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Preface

The goal of this essay is to give most of the prerequisite knowledge (modulo
various technical lemmas and theorems required to prove the main statements)
in order to understand the index theorem stated in [1] which we will finally state
at the end of this essay; in doing so I will assume some basic knowledge that one
might expect from having taken courses on differential geometry,analysis, and
algebra (i.e., Mat367,Mat357, Mat347 at UofT) and some basic comprehension
of category theory. The main topics I have chosen to focus on are: Elliptic Op-
erators, Fredholm Operators, Topological K-theory (and subsequent variations
of it), Topological Index, Analytic Index, and finally the statement of the index
theorem by uniqueness.

1 Elliptic Operators

An important class of operators we will study are elliptic operators, as later we
will be focused on the analytic index arising from their study, and so we describe
them here first. In writing this section I found [2] a useful resource.

Differential Operator of order r First let us define a differential operator
of order r on an n dimensional manifold (written in coordinates on an open
set U ⊂ Rn). In what follows we let Di =

d
dxi

, i.e., the coordinate derivative,
and Dαi

i is just Di applied αi times. To generalize notation we will then define
α = (α1, · · · , αn), and then Dα = Dα1

1 Dα2
2 · · ·Dαn

n . Then an operator of order r
is of the form P =

∑
|a|≤r fα(x)D

α where fα ∈ C∞(U). Note that this operator

is a map from from C∞(U) → C∞(U)

Symbol of an operator A then useful characterization of a differential op-
erator is its symbol p(x, ϵ) : Rn × Rn → R, which is defined as p(x, ε) =∑

|α|=r fα(x)ε
α where it is understood that if ε = (ε1, · · · , εn) and α = (α1, · · · , αn)

then εα =
∑n

i ε
αi
i (i.e. a type of polynomial).

Defining Elliptic Operators In general we will identify the contangent space
T ∗
xM of the manifold M at x with Rn. We then say a differential operator P is
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elliptic if p(x, ε) ̸= 0 for all x ∈ M and ε ∈ T ∗
xM − 0 (where one just uses the

coordinate deffinition of p given earlier).
With this definition, a simple example of an elliptic operator is given by

P =
∑

D2
i , i.e., the laplacian. A general rule of thumb is that one wants the

highest order terms to be such that the polynomial created by replacing Di with
xi is only 0 at the origin, hence another example is just P = D1 corresponding
to a linear line (note this rule of thumb applies for constant coefficients).

When we also are working over the Sobolev Space of C∞(M)∩L2(M), which
has a natural inner-product, we can in fact discuss the transpose of an elliptic
operator (which is still an elliptic operator) defined as the unique operator such
that ⟨Pu, v⟩ = ⟨u, PT , v⟩. We can in fact give a local definition of PT by taking
if the volume element dx = wdx1 · · · dxn then PT = 1

w

∑
|α|≤r D

αāαw, where

P =
∑

|α|≤r a
αDα. Note this formula comes simply from the definition of the

inner product of L2(M)

2 Fredholm Operators

We now move onto fredholm operators, and the notion of fredholm index which
is fundamentally what underlies the notion of analytic index described later
Section 6. In writing this section I found [3] a helpful resource.

Fredholm Operator Let X,Y be banach spaces, and let T : X → Y be
a bounded linear operator. If moreover Ker(T ), CoKer(T ) are finite dimen-
sional and Ran(T ) is closed (this last statement is redundant and follows from
CoKer(T ) being closed), we then call T a Fredholm Operator.

In fact we have an explicit example of Fredholm Operators in elliptic oper-
ators over compact manifolds. This is stated as a theorem

Theorem 1. If manifold X is compact, and P is an elliptic differential oper-
ator on it, then Ker(P ) is finite, CoKer(P ) = Ker(PT ) which is also finite
dimensional (as PT is elliptic).

Proof. refer to the text on elliptic operators [2]

Fredholm Index To a Fredholm operator we can define an index by ind(T ) =
dim(Ker(T ))− dim(CoKer(T )). From this definition we can also simply state
that a bounded linear operator T is Fredholm iff its index is well-defined and
finite: the forward direction of this statement is by definition, and the reverse is
simply the conditions for both Ker(T ) and CoKer(T ) to be finite (noting the
well-defined removed the case of taking ∞ − ∞). Regardless, what this gives
is a natural analytic (or algebraic) type index associated to elliptic operators
which we extend in Section 6.
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3 Defining Topological K Theory

The goal of this essay is to state the Atiyah-Singer theorem as it relates k-theory
to fredholm index, but to do that we must first venture into topoligcal k-theory.
An alternative formulation can be found with cohomology, but as Atiyah said,
k-theory is far more natural. In what follows I first describe vector bundles,
which I found [4] to be a good reference on it, and then subsequently go to
k-theory where I found [5] to be a good reference.

Defining Vector Bundles One can think of a vector bundle as a juxtapo-
sition of a vector-space onto every point of a manifold (and in fact this jux-
taposition creates an entirely new larger manifold). An example is simply the
tangent space TpM on M which gives a smooth manifold structure M × Rn.
More formally we define a Vector Bundle of M of rank k as a map π : E → M
where M is an n-dim manifold, and E is an n + k-dim manifold, that satisfies
the following:

1. Ep = π−1(p) has a real k-dim vector space structure for every p ∈ M (this
is arguably why it is called a ”vector” bundle)

2. We have a local trivializing cover of M , i.e., an open cover {Ui} of M ,
such that there is diffeomorphism ϕi : π

−1(Ui) → Ui × Rn and a map β
such that β ◦ ϕi = π|π−1(Ui) (one can think of this as the map π factoring
through a trivial vector bundle locally)

3. Furthermore ϕi|Ep
: Ep → p× Rn is a vector space isomorphism for all i

Note that given such a vector bundle, we will often refer to it as a rank k
vector bundle with basis M

Equivalence Classes of Vector Bundles The focus here is to develop a type
of algebraic geometry built on studying the vector bundles a manifold accepts;
yet as always we’d like to modulo out suitably ”equivalent vector bundles”. If
π0 : E0 → M and π1 : E1 → M are two rank k vector bundles with basis M , we
say they are isomorphic if there exists a diffeomorphism ϕ : E0 → E1 such that
π0 factors through π1 with ϕ, i.e π0 = π1◦ϕ, and that ϕ|π−1

0 (p) : π
−1
0 (p) → π−1

1 (p)

is a vector space isomorphism for all p ∈ M . That is not only are E0 and E1

diffeormorphic as manifolds, but they are in a way that does not change their
vector bundle structure (upto isomorphism).

Giving Vector Bundles a Ring Structure We begin by first noting that
we naturally have two operations on vector bundles of fixed rank k that one
might consider addition and multiplication. Given two vector bundles E0, E1 of
dimension l,m with basis M (note dimension is different than rank), we have
E0⊕E1 is a dimension l+m vector bundle by the map π0⊕π1 with the inverse
(π0 ⊕ π1)

−1(p) = π−1
0 (p)⊕ π−1

1 (p) (i.e., E0 ⊕ E1 is the union of the direct sum
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of fibers ∪p∈M (π0 ⊕ π1)
−1(p) which inherits a smooth manifold structure and

a vector bundle structure). We then also define a ”mulitplication” by E0 ⊗E1,
which is an lm-dim vector bundle given by the map (π0 ⊗ π1)

−1(p) defined by
(π0⊗π1)

−1(p) = π−1
0 (p)⊗π−1

1 (p) (i.e., E0⊗E1 is the union of the tensor product
of fibers ∪p∈M (π0 ⊗ π1)

−1(p) which inherits a smooth manifold structure and a
vector bundle structure). Note both of these operations are commutative after
modulo the equivalence of vector bundles (as then swapping order doesn’t do
anything).

Thus, with those two operations we have the equivalence classes of vector
bundles on M , V ect(M), is now a semi-ring; recall a semi-ring is a ring without
the condition of additive inverses. However we can artificially make it have a
ring structure by the grothendick construction over the semi-group given by the
”addition” ⊕ operator.

Theorem 2 (Grothendick Ring). For any semi-ring A, there is a ring A with
homomorphism g : A → A such that any homomorphism from A to a ring R
factors uniquely through A and g

Proof. We’ll just state the construction of A which is simply A × A/ where
(a, b) (c, d) is exists z ∈ A such that a + d + z = b + c + z. Then we define

(a, b) + (c, d) = (a+ c, b+ d) and (a, b)(̇c, d) = (ac+ bd, ad+ bc); note this is a
ring as we now have the additive inverse −(a, b) = (b, a) as then (0, 0) (a, b) −
(a, b) = (a + b, a + b). We refer the reader to ”An Introduction to K-theory”
by M Rordam for the rest of the proof, and more properties of the grothendick
construction.

With this we then define g(V ect(M)) the virtual bundles over M

Defining the K theory We will call the grothendick construction on the
isomoprhic classes of complex vector bundles on the manifold M (where we
have the same definition as before, but now that they are complex vector spaces
locally) the K-theory of M. In particular our map M → K(M) is a contravariant
functor from topoligcal spaces (as manifolds are also topological spaces) to rings.

K theory of one point sets As a useful example, note that if X = {x}, i.e.
one point set, then K(X) = Z. This is as every vector bundle is simply a vector
space, and they are all trivially vector bundle isomorphic upto dimension, and
thus our semi-ring of equivalence classes of vector bundles are isomorphic to the
semi-ring N (as the map [E] → dim(E) is a ring isomorphism under the opera-
tions we defined earlier, where our vector bundle sum in facts sums dimension,
and our vector bundle multiplication in fact multiplies dimension). Then ap-
plying the grothendick construction to get K(X), and noting the grothendick
construction on N gives Z, we have K(X) ∼= Z
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4 Building on K-theory

We now go through some of the basic properties of the k functor.

A natural K theory homomorphism If given a map between manifolds
f : X → Y and a vector bundle π : E → Y on Y we can define the pullback
q of π by f as f∗E = X ×Y E = {(x, v) ∈ X × E : π(v) = f(x)}, q(x, v) = x
and note this will define a vector bundle over X. It’s then easy to see this
then gives a homormorphism between vector bundles of X and Y (under the
semi-group operations we defined, noting the important fact was how they’re
note defined as regular direct sums and tensor products, but the union of them
done on fibers), and so moreover f∗ : K(Y ) → K(X) is a ring homomorphism.
We in fact have this homomorphism is invariant over homotopy class.

Theorem 3. Given f0, f1 : X → Y that are homotopic, and π : E → Y is a
vector bundle over Y , we have f∗

0 (E) = f∗
1 (E) (upto equivalence classes)

Proof. we refer the reader to the text on topological k-theory

Reduced K Theory Recall the example given in the earleir section where
K({x}) ∼= Z; in some way this is a part of every pointed space, and we can
formalize this as follows. Note that the embedding i : {x} → X for some point
x ∈ X induces a surjective ring homomorphism i∗ : K(X) → K({x}) ∼= Z.
Then by the isomorphism theorem we have K(x) ∼= Ker(i∗) + Z. In particular
we see the Z component is a part of every pointed K-theory, so without much
loss of generality we can simply forget this part and focus on the Ker(i∗) which
we call the reduced k-theory and denote as K̃(x)

Bott Periodicity One of the fundamental results in k-theory is a natural
2-periodicity when applying a certain operation called the reduced suspension
ΣX to a space X. The suspension SX of a space X is simply X× [0, 1]/Γwhere
indentifies X × 0 as a point and X × 1 as another point. We then define the
reduced suspension ΣX of a pointed space X by further identifying the line
{x0}× [0, 1] to a single point, i.e., ΣX = X× [0, 1]/((X× 0)∪ (X× 1)∪ ({x0}×
[0, 1])). Then Bott preiodicity gives the following

Theorem 4 (Bott Periodicity). K̃(X) ∼= K̃(Σ2X), where Σ2X is the reduced
suspension of ΣX.

Proof. We refer the reader to a text on k-theory for the proof, but one approach
is by using facts about K(S2)

KG-Theory There is a generalization of the spaces we have been considering
so far (smooth manifolds) by allowing them to admit an action by a compact
lie group G; we call such a space with an action by G a G-space. Additionally
we call a G-vector bundle a regular vector bundle of X but which now has a
group action G on the fibers Ex such that g : Ex → Eg(x) is linear. Thus now
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restricting to only G-vector bundles over a G-space X we analagoulsy (defining
the same operations for a semi-ring and extending to a ring by the grothendick
construction) form a ring KG(X).

Remark on KG The important reason for why we’ll consider KG is that we’ll
define index as a map from KG(TX) → R(G), where R(G) is the representation
ring. Formally R(G) is a ring defined by the finite dimensional representa-
tions (upto isormorphism equivalence classes) of G over the field C after the
grothendick construction; elementary representation theory tells one that direct
sums and tensor products of representations are well-defined and so the finite
dimensional representation are a semi-ring, and thus applying the grothendick
construction we obtain our ring R(G).

With that said, we then naturally get that KG({x}) = R(G), which follows
from the fact that the isomorphism classes of vector bundles of the one point
set simply define finite-dimensional representation of G (upto isomorphism), as
a finite dimensional representation of G is simply π : G → GLn(C) (and we
now have the G-vector bundles of {x} of rank k are K-dimensional represen-
ations of G). So from V ect({x}) ∼= semiring of finite representations of G, by
the grothendick construction on both sides we get K({x}) ∼= R(G)

5 Topological Index

The goal in this section will be to define (or perhaps more correctly, describe)
the map t-ind : KG(TX) → R(G) which is called the topological index. In
particular we will take X to also be compact, and proceed by first considering
X ⊂ Y for some G-space Y .

Defining i! : K(TX) → K(TY ): The process is as follows, one can first
consider a tubular neighbourhood N of X in Y ; this then gives a tubular neigh-
bourhood TN of TX in TY (note that formally TN is in fact a complex vector
bundle over TX); we then use the thom homomorphism defined earlier in Atiayh
and Singer’s paper [1] (pg. 11) to get a homomorphism ϕ : K(TX) → K(TN).
Then using the simple inclusion k : TN → TY and then the pushforward
k∗ : K(TN) → K(TY ), we define a map i! = k∗ ◦ ϕ.

Getting t-ind Now keeping X as a compact differentiable G-manifold, we
have the existence of real representation space E of G such that we have a
differential embedding i : X → G; as noted by the authors, this follows from
Peter Weyl Theorem with a proof found in [6]. Furthermore we also have the
inclusion j : P = {0} → E and thus from the above we have the maps i! :
KG(TX) → KG(TE) and j! : KG(TP ) → KG(TE). However in fact j! is
actually just the Thom Homomorphism (as the tubular neighbourhood TN of
TP is TE), and in fact an earlier statement in the paper [1] (pg. 12) showed
that Thom Homomorhpism in this case is an isomorphism. Lastly recall from
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the remark in our earlier section defining KG that KG(TP ) ∼= R(G) as P is a
one point set.

Thus we obtain t-ind by defining t-ind = i! ◦ j−1
! . This defintion satisfies

various properties, such as being well-defined (i.e., independent of the embed-
ding i) but we will omit these details in our discussion and refer the reader to
the original paper.

6 Analytic Index from K-theroy

As defined already in Section 2 we already have a notion of index for an elliptic
operator P , however we will like to extend the tool box we have have to describe
this index to a map a-ind : KG(TX) → R(G) analogously to how t-ind is defined;
beyond the aesthetic nicety of having both indexes defined similarly, we will see
later that this formulation is in fact the main idea behind the index theorem.

Some more facts about Fredholm Index We will state these extra details
as lemmas here, and leave the proofs for the reader to find in their desired
textbook on Fredholm Operators (notably the latter 2 are more or less trivial).
These are stated as properties 6.2 - 6.5 in the index paper [1].

Lemma 1 (Homotopy Equivalence of Index). (Fredholm) Index is invariant on
the homotopy class of symbols (in the space of invertible symbols)

Lemma 2 (Symbol Equivalence to Index Equivalent). If the symbol of two
elliptic operators P and Q are equal for all ε in the unit ball of TX, for some
metric, then ind(P ) = ind(Q)

Lemma 3. ind(P ⊕Q) = ind(P ) + ind(Q)

Lemma 4. ind(P ) = 0 means restricted to a certain vector bundles E,F in the
range and domain respectively, P is an isomorphism from E to F .

Analytic Index a-ind Now the first thing to note is that as defined, the
symbol p(x, ε) is in fact a vector bundle of TX, and hence is an element of
K(TX). Furthermore by the previous lemmas (and facts about homogenous
complexes of length one which we have not described here) one gets the index
of P depends only on the class of p(x, ε) ∈ K(TX), and furthermore that there
is a homomorphism a-ind : K(TX) → Z induced by the Fredholm index.

Generalized to KG: We now consider G-invariant elliptic operators P (when
applied to x and ε variables). We will define ind(P ) = [ker(P )]− [CoKer(P )] ∈
R(G) which note makes sense as Ker(P ) and CoKer(P ) are both invariant
under G actions and so are (given the algebra structure inherited from K(TX))
G-modules, and moreover finite dimensional by the fact our regular index exists.
Furthermore it can be shown that this still satisfies the necessary properties of
index that made ind(P ) only dependent on KG(TX) class of its symbol (one
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simply reproduces the above lemmas stated earlier, or the properties needed for
them, which Atiyah and Singer did in the paper [1]).

Hence more generally we define a-ind : KG(TX) → R(G) as induced by the
map ind(P ) = [Ker(P )]− [CoKer(P )] ∈ R(G).

7 The Index Theorem

As was suggested in our opening discussion in Section 6, the main idea behind
index theorem, and how it generalizes to other notions of index, is by standard-
izing the form of what an index map is. This is presented as the index function
(a functorial homomorphism) and the two axioms of index functions.

The Index Function Consider an arbitrary R(G) homomorphism indXG :
KG(TX) → R(G) such that it is functorial with respect to diffeomorphisms of
X and homomorphism of G. That is if f is a diffeomorphism between X and
Y then indXG = indYG ◦ f∗, and if ϕ : G′ → G is a group homomorphism then
indXG′ ◦ phi∗ = phi ◦ indXG . Such a map is called an index function.

The Uniqueness of Index There are then two further important axioms
which then give us the desired characterization (or uniqueness) of index func-
tions ind, stated as:

1. A1: If X is a point, then ind is an identity map from KG(TX) ∼= R(G) →
R(G)

2. A2: ind commutes with the i! map given in Section 5

With these axioms we then have one of the major results of the paper:

Theorem 5 (Uniqueness of Index Functions). Any index function ind which
satisfies the two axioms is then equal to t-ind

Proof. We refer the reader to the paper [1] as it follows rather trivially from
various definitions (though involves several diagrams)

In practice it is noted that verifying A2 is difficult, and so Atiyah and Singer
introduce several more elementary axioms which they then show implies A2;
nevertheless the above statement is the crux of the ”uniqueness” of index, and
ultimately the index theorem.

Applying to a-ind Finally the second half of the paper [1] proves that the
analytic index, given by the a-ind map we stated in 6, is in fact an index function
as defined above. Moreover, Atiyah and Singer show it satisfies both A1 and
A2. Thus we are left with the final remarkable result (which one might call the
index theorem)

Theorem 6 (Index Theorem). a-ind = t-ind
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