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1 introduction

In this essay we survey different aspects of the irrational rotational algebra, and
attempt to consolidate all the major work into one text. In doing so we omit
proofs (the reader is pointed to the references), however I do elaborate on them,
and in some cases fill in technical details that were left from the proof in the
paper but were perhaps not completely obvious (to me).

2 Definition of Aα

The first definition is based on how the algebra was defined in [8], where as the
second is the alternative definition seen in [6] and [7] and our textbook; they
are in fact the same, however I felt the way they’re introduced are sufficiently
different that they give different views on the same algebra.

The third definition isn’t used explicitly in the work I reference later on, but
is mentioned as an aside in exercise 5.8 of [9], and it doesn’t hurt to mention
here (and helps explain why sometimes the algebra is referred to as a crossed
product).

2.1 Rieffel Definition

Consider the unit circle in the complex plane T (or real plane, however they are
really just the same, and the complex plane lends it’s self to easier construction
and classification of properties). A natural action on the circle is the rotation
by some angle α in[0, 2π), but it’s rather trivial to see that repeated rotations
by α ∈ Q create finite cyclic groups, which are rather well understood. What’s
perhaps less intuitively understood is the behaviour of rotations by irrational α,
which aren’t necessarily finite. For simplicity, from now on we let α ∈ (0, 1) Q,
and when I refer to a rotation by α I refer to 2πα.

In order to characterize these actions, let us first focus on the set of L2

complex-valued integrable functions on T denoted L2(T). We can then charac-
terize the rotations by an irrational α as a unitary operator Sα on L2(T), and
can consider the family of rotations by α as the C* algebra generated by Sα
with pointwise multiplicative operators Mf , denoted C ∗ (Sα) or from now on
Aα; this is the irrational rotation algebra. When it is understood or irrelevant
in context, I will simply write S instead of Sα
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2.2 Unitary Characterization

We can also characterize Aα as the algebra generated by a pair of unitary
operators u, v such that u∗vu = e2πiαv; an explicit form for these are given in
exercise 5.8, however it’s worth noting there they consider operators on L2(T2)
where as [8] considers operators on L2(T). In general Aα is isomorphic to any
algebra generated by any unitaries U, V such that V U = λUV where λ = e2πα;
this is the universal property of Aα.

The introduction of [7] also gives another intuitive characterization of u, v
in Aα as the rotation by 2πα and the ”identity” imbedding into the complex
unit circle respectively.

2.3 Crossed Product

Let φ(z) = wz which maps T to T, where w = e2π∗iα. We can then also define
Aα as the crossed product C(T) ×θ Z, where θ is an automorphism of C(T)
given by the pull back with φ.

Crossed products have their own universal property which lead to character-
izing the above universal property, and various other facts lead to the simplicity
of Aα, and the unique tracial state. The universal property of the crossed prod-
uct is defined in terms of a bijection between unital representations and unital
*-homomorphisms, and I refer the reader to online resources to read more on
them; I found ”Lecture 2: Introduction to Crossed Products and More Examples
of Actions” by the university of Oregon informative.

3 Traces

The following are handy facts related to the trace of Aα.

3.1 explicit formulations

As is defined in exercise 5.8 in the textbook, we have a tracial state on Aα given
by t(a) = 〈aE0, E0〉, where E0 is the function in L2(T) that maps to one. As α
is irrational, we have that this is in fact the unique tracial state on Aα.

For a dense subset of Aα of the form
∑
MfnS

n, we have by [8] that the trace
is:

t(
∑

MfnS
n) =

∫
T

f0(t)dt (1)

where this is using the normalized Lebesgue measure for (T), i.e
∫ 2π

0
f0(ei∗t)dt.

By exercise 5.8, we also have the following characterization of the trace
when p ∈ Aα is of the form p = f(u)v∗+g(u)+vf(u), where f, g are continuous
functions from T to R:

t(p) =

∫
T

g(z)dz (2)
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where dz is the normalized haar measure on T.

3.2 Properties

From the theorem in [6] (see discussion of K0 groups) and theorem 1 in [8] (see
discussion on projections and equivalence), we have the following statement,
given as a corollary in [6]

Corollary (Range of trace). Let φ be the homomorphism from K0(Aα) to R
given by the trace t, then we have phi(K0(Aα)) = Z + Zα

4 Projections and Equivalence Conditions

What I’ll proceed to discuss/survey in this section are the main results of [8],
and highlight certain technical details I found interesting.

4.1 Theorem 1

The statement of the theorem is:

Theorem (Theorem 1). For every β ∈ (Z +Zα)∩ [0, 1] there is a projection p
in Aα s.t t(p) = β

The first thing to note is that in theorem 1.1 in the paper, we have the more
explicit formulation, where p is specifically stated to be supported on −1, 0, 1,
which means it is of the form:

p = MhS
−1 +Mf +MgS (3)

i.e consists of powers of S in −1, 0, 1. This is in fact analogous to the for-
mulation of p in exercise 5.8, and we in fact see question vii) gives the three
conditions used in the proof of theorem 1 (the entire problem is in fact very
reminiscent of the proof for this theorem).

Now the work done by [6] gives that the range of the trace is contained in
Z + Zα ∩ [0, 1] (look at discussion of k0 group for more details) and so directly
by theorem 1.1 you get theorem 1.2.

4.2 Theorem 2

The statement of the theorem is:

Theorem (Theorem 2). If α and β are irrational number both in [0, 1/2], and
Aα and Aβ are isomorphic, then α = β. If α is any irrational number, with
fractional part α, let β = 1− αorα depending on which is in [0, 1/2]. Then Aα
and Aβ are isomorphic.
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The proof of the theorem was essentially one paragraph, and it more or less
stems from elementary facts from our textbook. However it may still be worth
explaining why those facts are indeed facts.

The statement |p − q| < 1 is exercise 2.1 in the textbook, and the proof
comes from the fact that using f(p) = p − 1/2 one gets by spectral mapping
theorem (and the fact f is normal) that |f(p)| = 1/2 for every projection, and
so |p − q| < |f(p)| + |f(q)| = 1. The fact that separable means countably
many unitary equivalence classes stems immediately from homotopy equivalence
implying unitary equivalence (and seperable means countably many homotopy
classes by prop 2.2.4).

Perhaps the statement that a unique normalized trace range will be isomor-
phic invariant isn’t immediately obvious, however it comes from the fact that
there is a unique group homomorphism from the k0 group by the trace, and
under the isomorphism between k0 groups one would get another trace, but
there exists only one trace (by assumption), so the two are equivalent (and so
the range of both traces must be the same).

And so theorem 2 stems almost immediately, with the final note that β =
α or 1− α by noting that as both are in [0, 1], then clearly α is not in Z + Zβ
unless α is a multiple of β, but if the multiple isn’t 1, then then two groups
cannot be equal as β would not be in Z + Zα.

4.3 Theorem 3

The statement of the theorem is:

Theorem (Theorem 3). Let α and β be irrational numbers in [0, 1/2], and let
m and n be positive integers. Then if Mn⊗Aα is isomorphic to Mm⊗Aβ, then
m = n, and α = β.

and the proof is rather well detailed in the paper, and I don’t think there’s
much to add onto the technical details for it, however it’s worth noting the main
proposition leading to the proof is:

Proposition. The range of the normalized trace for Mn⊗Aα on projections is
exactly (n−1(Z + Zα)) ∩ [0, 1]

which in many ways is reminiscent of theorem 1.

4.4 Theorem 4

The statement of the theorem is:

Theorem 1 (Theorem 4). The algebras Aα and Aβ are strongly Morita equiv-
alent if and only if α and β are in the same orbit of the action of GL(2, Z) on
irrational numbers by linear fractional transformations.

The proof of the forward direction relies on several propositions and corol-
laries, but the final goal is that the ranges of the traces of Aα and Aβ only differ
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by a scalar, and from this one gets that you can write α as a linear fractional
transformation of β, and thus are in the same orbit of GL(2, Z).

The other direction follows directly from noting that Aα is strong morita
equivalent to Aα−1 , and the orbit of GL(2, Z) is generated by the elements that
bring α to α−1 and α + 1, so if α and β are in the same orbit then β is strong
mortia equivalent to α−1 and thus α.

5 K Theory

As we almost always ask when faced with a C* algebra, at least in this class,
what is the k0 and k1 group of Aα?

5.1 Imbeddings in AF algebras

The main theorem here is by [6] which showed that Aα can be injectively imbed-
ded into the inductive limit of a sequence of C*-algebras, specifically:

Theorem 2 (Imbedding AF). There exists a *-monomorphism p : Aα− > A
where A is an AF-algebra defined by an inductive limit of finite dimensional
C*-algebras for which the corresponding limit of K-groups is Z2− > Z2... where
each Z2 is endowed with its natural ordering, and the connecting map phin is
given by phin = ( an 1

1 0 ), where (an) is the continuous fraction expansion of α

And the consequence of this is that the K0 group of A is Z + Zα, and thus
as there exists a trace τ1 for A such that the range is contained in Z +Zα, and
as the trace for Aα is t = t1p, we have the range of its trace is contained in
Z+Zα, which was important for the results discussed in the projections section,
surveying Marc A. Rieffel’s work.

The construction of the algebras in the indcutive limit are rather detailed and
non-trivial, and I refer the reader to the original paper [6] for its construction
and the series of lemmas and calculations that led to the above theorem.

5.2 Inductive Limit

Whereas the above work only characterized a restriction on range of the trace,
and not necessarily what the k0 group of Aα is, the work done in [2] characterizes
the k0 group explicityly, and not-surprisingly it is simply Z + Zα with order
unit 1.

Theorem (Inductive Limit). There exists a sequence A1− > A2.. of finite direct
sums of matrix algebras over C(T) with inductive limit isomorphic to Aα.

A given sequence of such algebras has this property iff the inductive limit is
simple and unital, has a unique trace and has order-unit K0-group isomorphic
to (Z + Zα, 1) and K1 group isomorphic to Z2.

the proof of this is described in the paper, but perhaps to explain why
lemma 3 and theorem 1 imply that you can approximate the canonical generators
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arbitrarily close, note lemma 3 essentially ensures infinitely large q, q′ while
bounding the γ from theorem 1 (bounded by a neighbourhood from 1/4 to 4), so
we see the closest elements to the generators in the approximation from theorem
1 can become arbitrarily close as they are within a distance C(γ)max(1/q, 1/q′)
which can go to 0 as q, q′ can go to inf while C(γ) stays bounded.

6 Ext group

Recall first that the Calkin algebra is the quotient space of B(H), i.e bounded
linear operators, with K(H), the compact operators. Sticking with the nota-
tion in [7] we’ll define this as L/k(H). Defining the Exts(Aα) and Extw(Aα)
as classes of *-monomorphisms from Aα into the calkin algebra, and the homo-
morphism φ from Exts(Aα) to Z2 as φ([τ ]) = (ind(τ(u)), ind(τ(v)) we get the
following theorem from [7]:

Theorem. The map phi is an isomorphism. Furthermore, weak equivalence
classes are strong equivalence classes, so that Exts(Aα) and Extw(Aα) coincide.
The Ext group topology on them is the discrete topology.

The study of the Ext group for C* algebras began with the work of L.
G. Brown, R. G. Douglas and P. A. Fillmore in [1], and later work built on
characterizing it.

A perhaps useful theorem to seeing the connection of the Ext group to K-
theory is given as theorem 3.1 in [10], which is

Theorem. Let B be any C* algebra, then there are natural isomorphisms such
that Ext(C,B) ∼= K1(B) and Ext(C0(R), B) ∼= K0(B)

The proof for which relies on the work done in [5].

7 Using Irrational Rotations

7.1 Flows over an Irrational Rotation

An interesting question is how to study the flows over a rotation by irrational
number, and there has been a relatively recent body of literature investigating
the topic [4], [3]; I sadly have no experience with the particular topic they are
dealing with, but this does show that the study of irrational rotations are not
limited to C* algebras.

8 Final Remarks

The point of this essay, as stated at the beginning, was to consolidate as much of
the major work done on the irrational rotational algebra Aα into one document.
I will have inevitably missed things, but the point was to see how the various
topics in C* algebras manifest themselves in the case of Aα. As such we saw
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characterization of the trace, how this relates to projections, the use of inductive
limits to characterize the K0 and K1 groups, and finally a study of the Ext
groups.

Having surveyed this, a question I have, and perhaps is the topic for a future
essay or work, has to do with how this relates to representations. If one looks
back to the crossed product definition, the φ used to define Aα is simply the
unitary irreducible representations of the topological group G = (R/Z,+) acting
on L2(T) = L2(R/Z). So could it be said that all this work has studied is a
class of representations as a C* algebra, and knowing that this is in fact an
irreducible representation, do analogous theorems and claims follow for general
representations of G on L2(T)?
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