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Preface

A question I had was whether there might be relations between graphs and C∗-
algebras; at the time of writing this I was taking a graduate course in combina-
torics, and it felt natural that combinatorial structures had algebraic analogs.
That is what this essay will be about, as we investigate directed graphs and
how we can derive a Cuntz-Algebra for them, and then see how the properties
of this algebra are determined by the properties of the digraph, following the
work done in [3].

As the focus of this paper is quite specific, I attempt to explain the prereq-
uisite topics and proofs in more detail.

1 Directed Graphs

First let’s define what we mean by a graph. Abstractly a graph is a pair of
sets G = E, V , where V is a set of some elements (called vertices) and E is a
set of 2-tuples (vi, vj), called edges, where vi, vj ∈ V . We can consider V to
correspond to indices in some subset of the natural numbers, and this will be
called a labelled graph; dually we can consider any vertex to be just the same as
any other vertex, except perhaps for the 2-tuples they appear in E, and these
we’ll call unlabelled graphs. The distinction is perhaps grammatical in nature,
as there is still some distinction in an unlabbeled graph to define the edges as
mentioned, so it might perhaps be more intuitive to think of an unlabelled graph
as an isomorphism class of labelled graphs upto permutation of indices. For the
rest of the paper we’ll focus on these unlabelled graphs.

There is additional structure we can impose on a graphs, which is that we
can say the ordering of the vertices in the 2-tuple defining edges matter; we
can say that an edge (vi, vj) defines an ”out-edge” from vi and an ”in-edge” to
vj . Graphs with this additional structure are called directed graphs, and for
these it will make sense to define them as a pair of sets and a pair of function
G′ = E, V, r, s where E and V are as before, but r, s : E → V are the functions
that define the in and out vertex of an edge (i.e define their ordering).

To help visually distinguish graphs and digraphs (shorthand for directed
graphs), one might draw simple lines for the edges of a graph, and arrows for
the edges of a digraph, as depicted in figure 1.
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Figure 1: A regular graph and a digraph

1.1 Other structures of graphs

For a regular graph, we have a canonical adjacency matrix A, which has entries
0 or 1 depending on whether the entry in the matrix (vi, vj) is such that vi, vj
share an edge; in general we could have more than one edge between two vertices,
and so would have an entry greater than 1, but simple graphs, those with only
one edge between any two points and which are perhaps the nicest to study, will
at most have an entry of 1.

An adjacency matrix for a directed graph is similar, with the one distinction
being that although the adjacency matrix for a regular graph is symmetrical (as
an edge from vi to vj is an edge from vj to vi, and so both (vi, vj) and (vj , vi)
have a 1) a digraph isn’t, as we’ve made a distinction with ordering of edges.
This is perhaps the best way to think of the distinction between digraphs and
regular graphs in general, with graphs having an additional layer of symmetry
which digraphs don’t have.

There is an additional matrix we can associate with digraphs, which is the
edge matrix, which is a square matrix with the same dimension as number
of edges (i.e we enumerate the edges), which has value 1 for entry (e, j) if
r(e) = s(f) and 0 else; visually what this captures is whether two edges link up,
i.e one edge leads to the next edge.

Lastly, as this is used to define the topology of a digraph in [4], there is
a natural notion of a path for a graph, which is simply an ordered collection
of vertices v1, v2, ·, vn, which can be possibly infinite, such that (i, i + 1) is an
edge in E. Once again for digraphs we make the additional requirement that
ordering matters more, in that where as before (i+ 1, i) would be a satisfactory
edge (as we made no distinction), we require the edge between vi and vi+1 to
start at i and end at i+ 1. There is a specific type of path for directed graphs,
called a loop, which as you can imagine is an edge that start and ends at the
same vertex.
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2 Cuntz-Krieger Algbera

Now let’s also setup the main algebraic object we’ll be interested in, which
will be the cuntz-krieger algebra for matrices with entries 0 or 1; it’s rather
immediate to see how this is useful as adjaceny matrix for digraphs are of this
form (as we’ll be really just be focused on ”simple” digraphs, i.e those with only
one instance of a particular edge).

However the Cuntz-krieger algebra, introduced in [2] algebra is a specific
extension of the more general Cuntz algebra, introduced in [1], and so we start
our discussion there and build up to the former case which we’re more interested
in.

2.1 Cuntz-algebra

The simple definition of the Cuntz-algebra is given a hilbert space H and se-
quence of isometries {Si}ni=1 that satisfy

∑∞
i=1 SiS

∗
i = 1, we define the Cuntz-

algebra On as C ∗(S1, ·, Sn); we can extend this to considering a possibly infinite
sequence by requiring the sum be only less than or equal to 1‘and the C∗ algebra
is define the same.

However this doesn’t mean much at the surface, and for the sake intuition it
is perhaps far more beneficial to talk about the algebra which this is isomorphic
to, and which was used in the original paper [1] to find the various properties
On satisfies.

At a high-level this algebra we’ll construct is fundamentally no different than
C ∗ (S1, · · · , Sn) as we’ll proceed to construct essentially a span of the elements
generated by these isometries, but the process in which we do so will perhaps
shed slight on the sequential nature we can view this algebra; once I think we
recognize that we’re fundamentally dealing with a collections of sequences, it’s
perhaps not much of a stretch to try and make a connection with sequences in
other areas of math, such as the paths in a graph, which is what we’ll later do.

We thus begin by considering k-tuples with elements from {1, 2, · · · , n}, i.e
the indices of the set {Si}ni=1, and defining the set of all such k-tuples as Wn

k ,
and furthermore define the set of all these sets for different values of k as Wn

∞ =
∪∞k=1W

n
k ; this is all for notation, as we can then for a given α ∈ Wn

k , associate
with it the product of isometries from {Si} defined as Sα = Sα1

Sα2
· Sαk

.
Now there are a couple different things we can say about these product of

isometries, in particular, as we required the sum to equal 1, we have SiSj = δi,j ,
and more generally for u, v ∈Wn

k , we have SuSv = δu,v.
This sort of relation is very reminiscent of the relation between basis elements

of matrices, and in fact if we let Fnk be the C∗ algebra generated by {SuS∗v :
u, v ∈ Wn

k , we have FnK is isomorphic to Mnk , which is proposition 1.4 in [1]
and uses the prior fact.

As we’re interested in the collection of all these algebras for different k’s (as
we’ll be interested in the C∗-algebra generated by {Si}), we’ll define Fn as the
union of all Fnk for different k.
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Now, let us consider S1 and S∗1 to be special (for no real reason other than
we can, all the holds for a general element), and let’s call them V and V −1
respectively. It’s then a proposition in [1] (proposition 1.7) that if we look at the
algebra generated by {Si} and {S∗i } (star algebra generated by {Si}), defining

this to be P , then for any A ∈ P we have A =
∑−1
−N V

iAi + A0 +
∑N

1 AiV
i,

where Ai ∈ Fn are in fact unique (that is there is only one such set); intuitively
what this means is that we can think of any element in this star algebra as
being associated with a particular collection of elements in Fn, that is it is
constructed by looking at the elements we generated for our algebras Fnk for
different k, which we really just constructed by looking at the sequences we can
get from Wn

k , so it all boils down to the structure obtained by these sequences,
which is quite appealing as this shows the underlying structure we need to
reproduce to construct a specific instance of this algebra (which we’ll shortly
show leads to On).

At this point, all we need to do is define a norm and then take the completion
of P to obtain a C∗-algebra which is isomorphic to On; for this we simply take
the sup norm of ρ(X) ranging over X ∈ P where ρ is a star-representation of
P on a seperable hilbert space; lastly taking the completion with respect to
this norm we get the algebra L, which by proposition 1.11 in [1] we have is
isomorphic to On.

There are several important theorems related to On, in particular there
is theorem 1.12 which states the specific choice of Si doesn’t matter, which
intuitively makes sense as we used these to construct basis elements for an
algebra isomorphic to a matrix algebra, and so as any such set with the desired
property would still lead to an algebra isomorphic to the Mnk , we’d get by
extension that they are all isomorphic to each other). There are also other
properties such as On being simple, amongst some other interesting properties.
However what we’re really interested in the construction of this C∗-algebra as
we wish to somehow assocated with directed graphs a C∗-algebra, so we will
move past the various other interesting things about Cuntz-algebras.

So now we understand what the Cuntz algebra fundamentally is, and so move
on to what we’re particular intersted in, which are Cuntz-Krieger algberas.

2.2 Cuntz-Krieger Algebra

The Cuntz-Krieger Algebra is constructed in an analagous way to the Cuntz
algebra (perhaps best exemplified by the use of the same notation On for both),
however the focus now is to construct such an algebra to be specific to a square
n by n matrix A such that the entries of A are 0 or 1, and that no row/column
is 0 (i.e at least one non-zero entry for each); in fact, as remarked in the paper
[2], their construction does not change for general integer entries, but keeping
to their original presentation let’s focus with just 0 and 1 entries.

The technical way to do this is to move away from just isometries, and work
with partial isometries, enforcing certain constraints that make them specific
to the matrix. In particular, we consider a set of partial isometries Si

n
i=1 in a

Hilbert Space, satisfying the conditions
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1. PiPj = 0, i 6= j

2. Qi =

n∑
j=1

A(i, j)Pj

where Pi = SiS
∗
i and Qi = S∗i Si; note this later condition is what makes this

specific to A. The Cuntz-Krieger algebra On is then simply the C∗-algebra
generated by this set Si, and to understand the structure we can once again
focus on the algebras generated by specific products of this set; this analysis is
quite analagous in its steps to what was illustrated above with the cuntz algebra,
except with the need work with partial isometries, and so the technical details
are slightly different.

In particular where before we looked at the C∗-algebra generated by products
SuS

∗
v , we now define Fk to be the C∗-algebra generated by elements SuPiSv

with (u) = (v) = k; the analogous relations here to what we had before is that
SuS

∗
v = Quδu,v, and PiQuPj = δi,j , which together give us the relation we had

before for just isometries. We then define FA to be the closure of ∪Fk.
From this we then define P to be the star algebra generated from {Si} as

before and for any element X ∈ P we once again have an analogous equation
to what we had before with X =

∑
(v)≥1XvS

∗
v + X0 +

∑
(u)≥1 SuXu, where

Xv, X0, Xu ∈ FA.
At this point we once again define a norm on P by taking the sup-norm over

a ∗-representation of P over some separable hilbert space, and the completion
of P with respect to this norm is the Cuntz-Krieger algebra On.

Once again we see that the fundamental algebraic structure are these alge-
bras Fk generated by different sequences of the partial isometries, and so with
the additional characterization with 0,1 matrices, it’s perhaps clear that we
should be able to apply this to digraphs by looking at their adjacency matrices.

3 Cuntz-Krieger algebra for Digraphs

At this point all we really need to construct a Cuntz-Krieger algebra is a square
matrix, whose rows/columns are non-zero, and has integer entries. This is
incredibly general, and when looking at normal graphs it’s immediately clear
that if we have a complete graph, that is one such that there is a path between
any two vertices vi and vj , then it’s adjacency matrix will have at least a single
1 in each row (and thus column by symmetry) as if not then it has no edges
to any other vertex, and so the graph can’t be complete; we can thus clearly
associate a Cunts-Krieger Algebra to complete graphs.

This isn’t what was done in [3], rather they consider a slight relaxation on the
requirement for the matrix to have non-zero rows and columns, and construct
a completely analagous algbera to the Cuntz-Krieger algebra based on the edge
matrix (which is in fact the same under some conditions on the directed graph).

The relaxation is for condition 2 discussed in the previous section, where
they only require it to be true when the edge matrix A has a non-zero row at
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index i. There are also several other additional modification required through-
out the paper as they considered more general directed graphs and built to a
digraph with the desired properties; we’ll skip this, and go straight to consider-
ing digraphs that have no sinks (i.e no vertices with only in-edges), are locally
finite (i.e number of in and out-edges for each vertex is finite), and that each
loop has an exit (that is the vertex also has other edges to different vertices).

If we let E be such a directed graph (rather than the edges, to be consistent
with the notation in [3]), and AE it’s edge matrix, then we can find a set of
isometries {Se} that satisfy the relaxed conditions, and we then associate to E
the C∗-algebra C∗(E) generated by the elements of {SE}; the technical proof
for this requires a bit a graph theory, a bit of representation theory, and a bit
of ingenuity, and I suggest the reader read the paper for all the details, but the
main theme was to first get something very close to what we want for a digraph
(upto a representation) following the work for Cuntz-algebras, and then finding
when this becomes exactly the canonical Cuntz-algebra.

All of this is to say that we can associate to these digraphs a Cuntz-Krieger
C∗-algebra based on their edge matrix, and now the question is, what does this
tell us about the graph?

3.1 Loops and AF

The work and build up in [3] leads to the following dichotomoy summarized as
corollary 3.10 in their work (note that cofinal simply means connected but in
the specific sense of what paths are for directed graph ):

Corollary. Let E be a locally finite graph which has no sinks, is cofinal, and is
such that every loop has an exit. Then C∗(E) is simple, and

1. if E has no loops, then C∗(E) is AF

2. if E has a loop, then C (E) is purely infinite

The proofs for both are quite interesting, and are definitely worth a look; I
will omit them here, as they are essentially the main results of the paper and
are quite involved to prove but it requires both insights from analyzing various
graph constructions and algebraic tools.

4 Conclusion

Though we haven’t completely explained the proof for this final corollary that
links loops in digraphs and whether their associated C∗-algebra is AF or not,
hopefully the discussion about the sequential nature of the Cuntz algebras il-
luminates why someone would have looked at them in the first place. There
was also the remark at the beginning of section 4 about how we can immedi-
ately apply a Cuntz-Krieger algebra to a normal connected graph, and in fact I
have yet to read a paper that investigates this, which is perhaps an interesting
direction for some future work (or a summer project).
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Lastly I would have liked to talk about the work done in [4] which further
builds on groupoid structures and classifies the k groups for a specific C∗-algebra
they introduce for locally finite directed graph, but this would most likely add
another several pages to this essay to do it any sort of justice.
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