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Preface

The main theme of this essay is the role of categories and functors in classifica-
tion, and as such the essay is largely broken up into two mostly disjoint (though
not completely unrelated) parts. The first part introduces categories and a par-
ticularly well-known result, the Yoneda lemma. The second half moves towards
the classification functor as introduced in ”Towards a Theory of Classification”
[1], and presents the main theorems and examples given in the paper. The essay
should be largely self-contained, modulo longer proofs where I refer the reader
to other sources.

1 Category Theory

We briefly introduce categories and the different variations of them. We later
will discuss the Yoneda lemma, an important way of making these abstract
categories concrete, and the classification functor (which is the focus of this
essay) is a categorical notion. In writing this section I found [2, 3, 4] to be a
helpful resource.

1.1 The Definitions:

We begin with the definition of a category.

Definition 1 (Category C). A category C consists of a collection of ”objects”
ObjC, and for any two A,B ∈ ObjC a collection of ”arrows” (i.e maps) from
A to B, C(A,B). The complete collection of arrows for all pairings is denoted
ArrC. We require that C(A,A) have an identity arrow idA, and that one can
compose f : A → B and g : B → C to get g ◦ f : A → C ∈ ArrC.

Lastly we require f ◦ idA = f = idB ◦ f for f : A → B, and that composition
of arrows is associative.

Note that the terms ”arrows”, ”maps”, and ”morphisms” will be used in-
terchangeably. Furthermore, note that we used the term ”collection” and not
set; as one might imagine, the objects and arrows may not be a well-defined
set. When in fact ths objects and arrows are sets, we call the category small.
If only the collection C(A,B) is a set, we call it locally small. Some common
examples of categories include:
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1. the category of sets (Sets) with objects being sets and arrows being func-
tions between sets

2. the category of open sets (for a topological space X) with arrows being
inclusion

3. the category of groups, with objects being groups and arrows being group
homomorphisms

4. the category of small categories, with maps given by functors (defined
below) between small categories

It is also worth mentioning that to a given category C, we have as associated
opposite category Cop with the same objects, but arrows now given by f−1

where f ∈ ArrC; note we never enforced these arrows to be functions, hence
f−1 giving more than one output is fine.

Categories are often quite large structures, but we can reason about how
one category relates to another by the notion of a functor. This reduction is
an important theme and is at center of the classification of ”Nice” C∗-algebras,
and the classification functor we present later.

Definition 2 (Functors). Given two categories C1,C2 and f ∈ C(A,B) and
g ∈ C(B,C), a covariant functor F is a map between them (sending objects to
objects, arrows to arrows) s.t F (idA) = idFA and F (g ◦ f) = F (g) ◦ F (f).

Similarly, a contravariant functor is s.t F (g ◦ f) = F (f) ◦ F (g) where now
if f ∈ C(A,B) then F (f) ∈ C(FB,FC).

For example theK0 group of a C∗-algebra can be (and is) treated as a functor
from the category of C∗-algebras to the category of abelian groups. One also
has the identity functor id : C → C. As a last remark, note one can compose
functors F : C1 → C2 and G : C2 → C3 to obtain functor G ◦ F : C1 → C3.

1.2 Types of Objects

We now proceed to define some important types of objects

Definition 3 (Initial and Terminal Objects). An object 0 in a category C is
called initial if ∃! map from 0 to every object in C. Similarly and object 1 is
called terminal (or final) if there ∃! map from every object to 1.

Though these objects might not always exist, if they do they are in fact
unique upto isomorphism;

Lemma 1 (Uniqueness of Initial and Terminal). Initial and terminal objects
are unique upto isomorphism

Proof. Say you have two initial (or terminal) object A,B. Then by existence of
maps we have f : A → B and g : B → A, so g ◦ f : A → A. Then by uniqueness
we have g ◦f is the only map from A to itself, but note we always have idA from
A to itself. Thus g ◦ f = idA, and so we conclude they are isomorphisms.
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If an object is both the initial and terminal object, we say it is the zero
object.

1.3 Types of Functors

We mention two properties of functors now, as we will later see the ”Yoneda
embedding” will satisfy these properties.

Definition 4 (Faithful and Full). A functor F from C to D is faithful if for
every f, g ∈ C(A,B), F (f) = F (g) iff f = g. We say a covariant functor F
is full if F is surjective onto morphisms from D(FA,FB) (or D(FB,FA) if
contravariant). If a functor is both faithful and full, we say it is fully faithful.

2 Yoneda Lemma

The goal of this section is to present the Yoneda lemma. One can often think
of this as a way of taking an abstract category into a ”concrete” set category.
Though we will not explicitly discuss it for the later material, it is still worth
mentioning here. In writing this section I found [4] a useful resource.

2.1 The hA and hA functors

We first begin with a natural functor from a locally small category C to the
category of sets, often called the ”Hom functor”.

Definition 5 (hA). For a given object A ∈ ObjC, we associate a covariant
functor from C to the category of set hA defined by: takes objects X to the
set C(A,X), takes morphisms f : X → Y to the arrow between sets hA(f) :
C(A,X) → C(A, Y ) given by f ◦ g for g ∈ C(A,X).

It’s worth mentioning that an alternative notation for C(A,X) isHom(A,X),
and hence hA is sometimes written as hom(A, ·) (this also explain why we use
an h to denote the functor). We also have a completely analogous contravariant
functor to the above.

Definition 6 (hA). For a given object A ∈ ObjC, we associate a contravariant
functor from C to the category of set hA defined by: takes objects X to the
set C(X,A), takes morphisms f : X → Y to the arrow between sets hA(f) :
C(X,A) → C(Y,A) given by g ◦ f for g ∈ C(X,A).

What we have essentially established is a natural way to associate an object
A to a functor from C to the category of sets.

2.2 Natural transformations

We need to now digress and understand what a morphism from a functor to
another functor is. This is given by the following definition.
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Definition 7 (Natural Transformation). Given functors F,G from C1 → C2,
a natural transformation ϕ : F → G associates to each object A ∈ ObjC a
morphism ϕA : F (A) → G(A), and is s.t given morphsim f : A → B we have
G(f) ◦ ϕA = ϕB ◦ F (f) as morphisms from F (A) → G(B).

In fact given these morphisms we can define the category of functors.

Definition 8 (Category of functors). Given categories C1,C1, we obtain the
category of functors (from C1 to C2) [C1,C2] with morhpisms being the natural
transformations between functors.

A notable example of a category of functors associated to a category C is
[Cop, Sets], called the presheaf of C. As another remark, note Nat(F,G) :=
C[F,G] where C is a category of functors (and Nat(F,G) meaning the natural
transformation from F to G), however we will stick to writing Nat(F,G) as that
is the common terminology.

Building on this, we say a functor F ∈ [C, Sets] is representable if F ∼= hA

for some A ∈ ObjC.

2.3 The Lemma

With all this said, we can finally state the lemma

Lemma 2 (Yoneda Lemma). Given a category C and any covariant functor
F : C → Sets and object A ∈ ObjC, we have a bijection between Nat(hA, F )
F (A). In fact the bijection is given by ϕ → ϕA(idA).

A proof is given in [4]. An alternative way of understanding this lemma is by
considering the subcategory of representable functors of [C, Sets]. Calling this
subcategory R, we have R(hA, hB) ∼= hB(A) = C(B,A), a particularly nice ex-
pression relating the morphisms between objects to the natural transformations
between their Hom transformations.

2.4 Some Consequences

In fact the previous remark gives us the contravariant Yoneda embedding send-
ing objects A to hA ∈ [C, Sets] and f ∈ C(B,A) to natural transformations in
Nat(hA, hB). Considering Cop we get a covariant embedding, stated below.

Definition 9 (Yoneda Embedding). We have a covariant functor called the
”Yoneda Embedding” from C to [Cop, Sets] given by sending objects A to hA,
and f ∈ C(A,B) to natural transformations hA → hB.

In fact we have the Yoneda embedding is fully faithful.

Corollary 1. The Yoneda embedding is fully faithful

The proof is given in [4]. Note this then tells us hA
∼= hB iff B ∼= A by

definition of fully faithful (the full gives onto all the representable functors, and
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faithful gives the isomorphism condition). In particular we now have a way
to relate the abstract objects in a category to functors from that category to
sets, in a way making the category more concrete as remarked in the opening
paragraph of this section.

3 Categorical Classification

We now move towards defining categorical notions of classification, as proposed
by [1]. The material presented here will be based on [1], and could be viewed
as a condensed presentation of the results in that paper.

3.1 Beginnings

We begin with the main definition we study.

Definition 10 (Classifying Category and Functor). Given a category C, a clas-
sifying category C′ is s.t ∃ a functor F : C → C′ s.t FA ∼= FB ∈ C′ iff
A ∼= B ∈ C. We call this functor the classifying functor.

As a remark, note the difference between the above definition and a faithful
functor is that in the above we are looking at objects, where as with a faithful
functor we are looking at morphisms.

The goal is to ask when such functors exists, and what the classifying cat-
egory would be (which are preferably ”simpler categories”). Note if all objects
were isomorphic in C, then quotienting out isomorphism gives a classifying cat-
egory with the classifying functor being the quotient map; in this way our main
issues to existence have to deal with homomorphisms.

A first approach is to simplify the problem by quotienting out the homo-
morphisms between objects differing by an automorphism in the domain or
codomain (or both); would this give us a classifying category?

Lemma 3. Quotienting the homomorphisms differing by an automorphism does
not always give a category

Proof. Proof by counter-example, where we see the composition of two maps
does not belong to a single equivalence class contradicting well-defined. Consider
the category Sets. Note the composition of two non-constant maps can be
constant; one trivially obtain such a maps by taking the second map to be s.t
the image of the first gets sent to a single element. However the product of
the equivalence classes of these maps always contains a non-constant map (by
shuffling the image of the first to be in the preimage of two different values
for the second map). However constant maps are equivalent only to constant
maps (when composing or precomposing by automorphism). Thus we have the
product of the equivalence classes of the two maps gives a map belonging to two
equivalence classes. This gives a contradiction to well-definedness.
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3.2 The First Theorem

In light of this we shall consider categories with a notion of ”inner automor-
phism”, i.e conjugation. Examples of such categories are groups (or all cate-
gories with a group action). The important fact about inner automorphisms is
by the definition of a morphism on groups, they factor through: f(g−1ag) =
f(g)−1f(a)f(g). This property gives the categorical axiom we need.

Definition 11 (Inner-automorphism Axiom). g ∈ C(A,A) is an inner-automorphsim,
then for all f ∈ C(A,B), f ◦ g = h ◦ f where h ∈ C(B,B) is an inner-
automorphism.

Any collection of automorphism associated to each object which are consis-
tent with the axiom is sufficent for the following result, and we will call them
inner-automorphisms. Do note then the inner-automorphism for a given ob-
ject are in fact a subgroup under composition (which one might call a normal
subgroup in the group-theoretic setting).

Theorem 1. Let C be a category with an inner-autormorphsim (given by the
above axiom). Then Cout obtained by quotienting out the inner-automorphisms,
is a category and moreover a classifying category of C with the the quotient map
functor.

I refer the reader to [1] for more explanation on the historical context of
the result. All that is needed to prove the result is to show Cout is a category,
and this follows by looking at what went wrong in the case of automorhisms
(stated as a lemma earlier). As a last remark, in practice this is applied to
categories with a group structure, so one can ignore the abstraction of inner-
automorphisms and consider the concrete action one is used to.

3.3 The Second Theorem

The above result, while interesting, can be made stronger if there is a notion of
topology over the morphisms of C, ArrC.

In particular say each C(A,B) has a complete metric structure; We would
like it satisfy two additional ”compatibility” conditions:

1. For any objects A,B,C the map C(A,B) × C(B,C) → A,C is jointly
continuous in both C(A,B) and C(B,C).

2. Composition by an inner-automorphism is an isometry, i.e for any f an
inner-isomotry on C(B,B) for arbitraryB, then C(X,B) → C(X,B) given
by f ◦ g, is an isometry

With these conditions one has the following theorem.

Theorem 2. Let C be a category with an inner-automorphism (as stated ear-
lier) and ArrC has a complete metric structure satisfying the previous two ax-
ioms. We then have Cout is a category (with same objects but morphism now
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the closure of equivalence classes of morphisms by inner-automorphisms), and
moreover the quotient map is a classifying functor. One could call this a strong
classification as isomorphisms in Cout lift to C.

The proof uses the intertwining argument found in much of the classification
of C∗-algebra literature, and the explicit proof is given in [1]. Note the main
addition given with this theorem is that the classification category contains
slightly more morphisms (the closure) but in return also gives a lifting property.

3.4 Applying the Second Theorem

The last question at hand is when do categories satisfying the axioms needed for
Theorem 2 exist? In what follows we briefly describe some examples representa-
tive of the types of examples described in [1]. The theme is taking advantage of
a countable structure, and defining a metric according to the discrete structure
(or existing topology) of the objects.

Countable Groups In this category C, inner-automorphism is given by the
usual group definition of conjugation. As objects G,H are countable, we can
enumerate them and define the following complete metric on f, h ∈ C(G,H):

d(f, h) =
∑
g∈G

2−nδf(g),h(g)

One can check that the triangle inequality is satisfied (follows from the kro-
necker delta satisfying triangle inequality) and is positive definite (follows from
summing over all elements).

Furthermore, one can check the two topological compatability of Theorem
2 are satisfied: the proofs for both amount to writing out the definitions and
rearranging (see [1] for the second).

Thus we have an example of a category satisfying Theorem 2, where the
topology on morphisms is given by a type of discrete point-wise topology.

Seperable C∗-algebras In this category C, the inner-automorphisms are
given by conjugation with unitary elements (where now note inverse is the same
as taking the adjoint). Note that being seperable (for a complex-algebra) is
equivalent to having a sequence (an)n∈N s.t the span of the sequence is all of
the algebra A. Then we define the following complete metric on C(A,B) by:

d(f, h) =
∑
n∈N

2−n||f(an)− h(an)||

Note the homomorphism are linear, hence agreeing on the generating set
mean they agree everywhere, showing this is in fact positive definite. We also
have the two conditions for Theorem 2 are satisfied: the first follows similarly to
the second where one can use that finite sets of points form a compact subset,
and the second follows from conjugation by unitaries being an isometry.

Thus we have another example of a category satisfying Theorem 2.
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